

BAKER COLLEGE STUDENT LEARNING OUTCOMES

CIS 4010 Advanced Computer Architecture 3 Semester Hours

Student Learning Outcomes & Enabling Objectives

- 1. Evaluate the performance of a given microprocessor architecture using several measures.
 - a. Understand the how the number of results per cycle relates to clock cycles
 - b. Understand maximum program or data size
 - c. Apply cost analysis relevant to number of cycles based on maximum data size.
- 2. Examine the philosophy of various benchmark programs related to microprocessor performance and evaluate the impact of that philosophy on the results of the tested architecture.
 - a. Identify specific applications for benchmark concepts attributable to SPEC95.
 - b. Identify specific applications for benchmark concepts attributable to MIPS.
 - c. Identify specific applications for benchmark concepts attributable to Amdahl's Law.
- 3. Examine the evolution of instruction sets in HLL, RISC and CISC architectures.
 - a. Identify specific application for instructions in HLL, RISC and CISC architecture.
 - b. Understand advantages and disadvantages for RISC and CISC.
- 4. Examine proficiency and understanding of principles of binary arithmetic operations.
 - a. Identify the application of modern ALU designs as they relate to Logical manipulation, shifting, bit-by-bit operations of AND, OR, NOT.
 - b. Apply Multiplication and division algorithms, shift/add and shift/add/subtract
 - c. Identify and apply floating-point numbers and normalization on construction of ALU.
- 5. Explain the performance improvement incurred in an architectural system through the use of parallel, pipelined, and multiprocessor designs.
 - a. Identify all architectural design systems such as parallel, pipeline and multiprocessor.
 - b. Apply all architectural design systems such as parallel, pipeline and multiprocessor.
- 6. Assess the philosophy of various benchmark programs related to microprocessor performance.
 - a. Comparing and contrasting different designs.
 - Understanding the impact of branch prediction design on choices made by a programmer.

- 7. Evaluate the effectiveness of hierarchical memory designs.
 - a. Analyzing relationships of memory levels including cache and virtual memory.
 - b. Analyzing memory levels in terms of speeds, sizes, and costs.
 - c. Analyzing the performance penalties incurred in memory misses.
 - d. Comparing and contrasting write-through cache with write-back cache in modern designs.
- 8. Evaluate and describe assembler and linker functions.
 - a. Understand when and how to use assemblers and the disadvantages.
 - b. Understand how linkers allow separate compilation of different pieces of a program.
 - c. Understand how a program loads into memory and memory usage.
 - d. Understand procedure call conventions.
 - e. Understand exceptions and interrupts are handled by registers and memory.

These SLOs are approved for experiential credit.

Effective: Fall 2017