

CSC507: F​OUNDATIONS​ ​OF​ O​PERATING​ S​YSTEMS

Credit Hours​: 3
Contact Hours: ​This is a 3-credit course, offered in accelerated format. This means that 16 weeks of material is

covered in 8 weeks. The exact number of hours per week that you can expect to spend on each course will
vary based upon the weekly coursework, as well as your study style and preferences. You should plan to
spend 14-20 hours per week in each course reading material, interacting on the discussion boards, writing
papers, completing projects, and doing research.

Faculty Information: ​Faculty contact information and office hours can be found on the faculty profile page.

C​OURSE​ D​ESCRIPTION​ ​AND​ O​UTCOMES

Course Description:

In this graduate course, students will develop a foundational knowledge in operating system concepts. Students
will gain a detailed understanding of appropriate operating system constructs that involve OS abstractions and
mechanisms. Students will also gain understanding of the constructs of multithreading and resource
management in computer systems.

Course Overview:

This course will introduce you to the ins and outs of Computer Operating Systems. You will learn how and why
operating systems evolved from the simple batch systems in the early days, to the advanced and varied systems
we use today. You will understand the essential elements of operating systems, including processors, memory,
and file management. This course will use both theory and practical application of the information learned.

Course Learning Outcomes:

1. Identify the resources and factors that affect computer system performance.
2. Implement techniques to improve parallelism and latency in an application.
3. Contrast the kernel and user mode in developing key approaches to operating system design and

implementation.
4. Analyze processes that can be utilized to improve the operating system environment during execution.
5. Use system commands to manage I/O systems and file systems in an operating system environment.

P​ARTICIPATION​ & A​TTENDANCE

Prompt and consistent attendance in your online courses is essential for your success at CSU-Global Campus.
Failure to verify your attendance within the first 7 days of this course may result in your withdrawal. If for some
reason you would like to drop a course, please contact your advisor.

Online classes have deadlines, assignments, and participation requirements just like on-campus classes. Budget
your time carefully and keep an open line of communication with your instructor. If you are having technical
problems, problems with your assignments, or other problems that are impeding your progress, let your
instructor know as soon as possible.

C​OURSE​ M​ATERIALS

Required:

Stallings, W. (2018).​ Operating systems: Internals and design principles​ (9th ed.). Hoboken, NJ: Pearson
Education, Inc.
ISBNs: 9780134670959, 0134670957, 9780134700113, 0134700112

NOTE: ​All non-textbook required readings and materials necessary to complete assignments, discussions, and/or

supplemental or required exercises are provided within the course itself. Please read through each course module

carefully.

C​OURSE​ S​CHEDULE

Due Dates

The Academic Week at CSU-Global begins on Monday and ends the following Sunday.

● Discussion Boards:​ The original post must be completed by Thursday at 11:59 p.m. MT and Peer
Responses posted by Sunday 11:59 p.m. MT. Late posts may not be awarded points.

● Critical Thinking:​ Assignments are due Sunday at 11:59 p.m. MT.

W​EEKLY​ R​EADING​ ​AND​ A​SSIGNMENT​ D​ETAILS

Module 1

Readings

· Chapter 1 in ​Operating systems: Internals and design principles
· Chapter 2 in ​Operating systems: Internals and design principles
· Denning, P. J. (2016). Fifty years of operating systems. ​Communications of the ACM, 59​(3)​.
· Denning, P. (2015). Perspectives on OS foundations. In ​SOSP '15: SOSP History Day 2015.

Discussion (25 points)

Critical Thinking (75 points)

Option 1: Compare and contrast structural elements of computers.

Determine the specifications of the four main structural elements of your computer: processor, main memory,

I/O modules, and system bus. Find this information for the other major type of computer OS, i.e. if your

computer's OS is Windows, obtain this information for a Mac, or vice versa. You may need to use a library

computer for this. Write a summary of your findings, comparing the specifications of the systems, along with

your expectations of differences in performance and capacity of the computers running these systems.

Your paper should be 2-3 pages in length and contain at least four references. Use the CSU Global library to find

additional appropriate references beyond the references given in the modules. Make sure it is in APA Format. A

helpful resource for APA formatting can be found at the CSU Global Guide to Writing and APA.

Option 2: Compare and contrast structural elements of mobile devices.

Determine the specifications of the four main structural elements of your mobile device: processor, main

memory, I/O modules, and system bus. Find this information for the other main type of mobile device OS, i.e. if

your mobile phone runs on Android OS, obtain this information for an iPhone, or vice versa. You may need to

visit a mobile phone store to get this information for a device with another OS, or use a friend or relative’s

phone. Write a summary of your findings, comparing the specifications of the systems, along with your

expectations of differences in performance and capacity of the devices running these systems.

Your paper should be 2-3 pages and contain at least four references. Use the CSU Global library to find

additional appropriate references beyond the references given in the modules. Make sure it is in APA Format. A

helpful resource for APA formatting can be found at the CSU Global Guide to Writing and APA.

Module 2

Readings

· Chapter 3 in ​Operating systems: Internals and design principles
· Chapter 4 in ​Operating systems: Internals and design principles
· Iwasaki, S., Amer, A., Taura, K., & Balaji, P. (2018). Lessons learned from analyzing dynamic

promotion for user-level threading. In ​SC '18: Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis.

· Hammacher, C., Streit, K., Zeller, A., & Hack, S. (2016). Thread-level speculation with kernel support.
In ​CC 2016: Proceedings of the 25th International Conference on Compiler Construction.

Discussion (25 points)

Critical Thinking (75 points)

Option 1: Compare and contrast Process Management utilities of Linux OS with a computer's OS.

Compare the Process Management utilities in the Linux OS with that of your main computer's OS. Which one is

easier to use and why? Describe the information provided by each and which system provides more useful

information. Discuss what you would do differently if you were to create your own Process Management utility.

Your paper should be 2-3 pages and contain 2-3 references. Use the CSU Global library to find additional

appropriate references beyond the references given in the modules. Make sure it is in APA Format. A helpful

resource for APA formatting can be found at CSU Global Guide to Writing and APA.

Option 2: Compare and contrast Process Management utilities of Linux OS with a mobile phone's OS.

Compare the Process Management utilities in the Linux OS with that of your phone or tablet's OS. Which one is

easier to use and why? Describe the information provided by each, and which system provides more useful

information. Discuss what you would do differently if you were to create your own Process Management utility?

Your paper should be 2-3 pages and contain 2-3 references, which can include URLs of helpful websites. Use the

CSU Global library to find additional appropriate references beyond the references given in the modules. Make

sure it is in APA Format. A helpful resource for APA formatting can be found at CSU Global Guide to Writing and

APA.

Portfolio Milestone (10 points)

Option #1: Using C Programming language

In your Linux installation, use Bash, or a Linux Shell of your choice, to do the following:

1. Generate a random number: ​echo $RANDOM

2. Output a random number into a file called file1.txt: ​echo $RANDOM > file1.txt

3. Append another random number to the end of this file:​ echo $RANDOM >> file1.txt

4. Remove file1.txt: ​rm file1.txt

5. Create a script called numbers.sh, that does this one thousand (1000) times, using the “for” loop.

6. Make the script executable: ​chmod +x numbers.sh

7. Run the script: ​./numbers.sh

If you are not familiar with Linux Shell scripting, watch the following videos.

McWilliams, G. (2019, April 26) ​Introduction to bash​ [Video file]. Retrieved from

https://www.linkedin.com/learning/linux-system-engineer-bash-shell-scripting-for-automation/introduction-to-

bash

Simpson, S. (2013, November 26) ​Introducing for loops​ [Video file]. Retrieved from

https://www.linkedin.com/learning/learning-bash-scripting/introducing-for-loops

You should now have a file called file1.txt containing 1,000 lines, with each line being a random number.

Create a C program to perform this task, to create file2.txt. You should now have 2 files: file1.txt & file2.txt, each

containing 1,000 lines, with each line being a random number.

Do a word and line count on these programs, scripts, and text files (feel free to create a new folder(s) to store

these, if you prefer a certain level of organization.)

wc *

Take a screenshot of the files and their word/line counts and submit to the instructor.

Option #2: Using Python Programming language

In your Linux installation, use Bash, or a Linux Shell of your choice, to do the following:

1. Generate a random number: ​echo $RANDOM

2. Output a random number into a file called file1.txt: ​echo $RANDOM > file1.txt

3. Append another random number to the end of this file: ​echo $RANDOM >> file1.txt

4. Remove file1.txt: ​rm file1.txt

5. Create a script called numbers.sh, that does this one thousand (1000) times, using the “for” loop.

6. Make the script executable: ​chmod +x numbers.sh

7. Run the script: ​./numbers.sh

If you are not familiar with Linux Shell scripting, watch the following videos.

McWilliams, G. (2019, April 26) ​Introduction to bash​ [Video file]. Retrieved from

https://www.linkedin.com/learning/linux-system-engineer-bash-shell-scripting-for-automation/introduction-to-

bash

Simpson, S. (2013, November 26) ​Introducing for loops​ [Video file]. Retrieved from

https://www.linkedin.com/learning/learning-bash-scripting/introducing-for-loops

You should now have a file called file1.txt containing 1,000 lines, with each line being a random number.

Create a Python program to perform this task, to create file2.txt. You should now have 2 files: file1.txt &

file2.txt, each containing 1,000 lines, with each line being a random number.

Do a word and line count on these programs, scripts, and text files (feel free to create a new folder(s) to store

these, if you prefer a certain level of organization.)

wc *

Take a screenshot of the files and their word/line counts and submit to the instructor.

Module 3

Readings

· Chapter 5 in ​Operating systems: Internals and design principles
· Chapter 6 in ​Operating systems: Internals and design principles
· Barbosa, V. C., Diêgo, A., Protti, F., & Souza, U. S. (2016). Deadlock models in distributed

computation: Foundations, design, and computational complexity. In ​SAC '16: Proceedings of the
31st Annual ACM Symposium on Applied Computing.

· Morrison, A. (2016). Scaling synchronization in multicore programs. ​Communications of the ACM,
59​(11).

Discussion (25 points)

Critical Thinking (75 points)

Option #1: Case Studies of Large Data Files

In the Portfolio Project, you are working with data files containing random numbers. The data files can be

anywhere from a few lines (rows) to millions or billions of rows. Creating and processing such files efficiently has

very practical applications. For example, instead of random numbers, a company might have names and other

information for its employees, which can be in the hundreds of thousands.

Describe, in detail, 3 real-world examples of possible data files of at least one million rows, and why it would be

important for a business to process such files in fractions of a second instead of several seconds. You can use

arenas such as financial systems, inventory tracking, state drivers license information, or anything else that you

can think of. How would you use the methods that were covered in this and the previous module to optimize

processing times for such files?

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include

references in addition to the course textbook. The CSU Global Library is a good place to find these references.

Option #2: Case studies of very large data files

In the Portfolio Project, you are working with data files containing random numbers. The data files can be

anywhere from a few lines (rows) to millions or billions of rows. Creating and processing such files efficiently has

very practical applications. For example, instead of random numbers, a company might have names and other

information for its employees, which can be in the hundreds of thousands.

Describe, in detail, 2 real-world examples of possible data files of at least one billion rows, how long you think it

takes, on average, to process them, and why it would be important for a business to be able to process such files

as quickly as possible. You can use arenas such as social media, banking, worldwide weather statistics, or

anything else that you can think of. How would you use the methods that were covered in this and the previous

module to optimize processing times for such files?

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include at least

references in addition to the course textbook. The CSU Global Library is a good place to find these references.

Portfolio Milestone (50 points)

Option #1: Using C Programming language

In your Linux installation, modify the numbers.sh script, to do the following:

1. Add to the script commands to display the system time, before and after the process. Optional:

store the system time in variables, to display just the difference at the end of the process, i.e. how

many hours/minutes/seconds it took to run this script. Hint: use the built-in SECONDS variable to do

most of the work.

2. Modify the “for” loop to repeat one million (1,000,000) times.

3. Save the script and delete file1.txt that was created from the previous exercise.

4. Run the script.

You should now have a file called file1.txt containing one million lines, with each line being a random number.

You should also have information indicating how long this process took to run.

Create a C program to perform this task, to create file2.txt, and compare execution times. Can you use what you

have learned in the last 2 modules, like multithreading or synchronization, to make this process run faster? How

would you do that? Use at least 2 other methods to try to improve execution time.

Write down the summary of the results, with the following information:

1. Describe the different methods you used to perform this task, with the times each one took.

2. Explain why you chose each of those methods.

3. Did each of these methods perform as you expected them to, or were there any surprises? Describe

your findings in detail.

4. If your system had double its current processing power (CPU power), how much of an improvement

would you expect for this process? Explain the reasons for that estimate, and provide references to

support your opinion.

Option #2: Using Python Programming language

In your Linux installation, modify the numbers.sh script, to do the following:

1. Add to the script commands to display the system time, before and after the process. Optional:

store the system time in variables, to display just the difference at the end of the process, i.e. how

many hours/minutes/seconds it took to run this script. Hint: use the built-in SECONDS variable to do

most of the work.

2. Modify the “for” loop to repeat one million (1,000,000) times.

3. Save the script and delete file1.txt that was created from the previous exercise.

4. Run the script.

You should now have a file called file1.txt containing one million lines, with each line being a random number.

You should also have information indicating how long this process took to run.

Create a Python program to perform this task, to create file2.txt, and compare execution times. Can you use

what you've learned in the last 2 modules, like multithreading or synchronization, to make this process run

faster? How would you do that? Use at least 2 other methods to try to improve execution time.

Write down the summary of the results, with the following information:

1. Describe the different methods you used to perform this task, with the times each one took.

2. Explain why you chose each of those methods.

3. Did each of these methods perform as you expected them to, or were there any surprises? Describe

your findings in detail.

4. If your system had double its current processing power (CPU power), how much of an improvement

would you expect for this process? Explain the reasons for that estimate, and provide references to

support your opinion.

Module 4

Readings

· Chapter 7 in ​Operating systems: Internals and design principles
· Kültürsay, E., Ebcio, K., Küçük, G., & Kandemir, M. T. (2016). Memory partitioning in the limit.

International Journal of Parallel Programming​, ​44​(2), 337–380. (To view this reading, please open
the link provided and download the "Full PDF Text.")

· Liu, Y., Kato, S., & Edahiro, M. (2018). Is the heap manager important to many cores? In ​ROSS'18:
Proceedings of the 8th International Workshop on Runtime and Operating Systems for
Supercomputers.

Discussion (25 points)

Critical Thinking (75 points)

Option #1: Comparing Best-Fit to First-Fit Placement Algorithms

Create a PowerPoint presentation with at least 5 slides that demonstrates why the best-fit algorithm ends up

performing worse than the first-fit algorithm in allocating memory to processes. You can use "before" and

"after" snapshots of the scenarios that you put forth.

Write a paper explaining how each algorithm works for your scenarios, how many processes can be loaded with

each algorithm before requiring memory compaction, and any other determining factors that would influence

you in selecting one algorithm over another. Can you think of situations where the best-fit algorithm is

preferable to the first-fit algorithm? Explain your reasons for that opinion.

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include at least

four references in addition to the course textbook. The CSU Global Library is a good place to find these

references.

Option #2: Comparing Best-Fit to Next-Fit Placement Algorithms

Create a PowerPoint presentation with at least 5 slides, that demonstrates why the best-fit algorithm ends up

performing worse than the next-fit algorithm in allocating memory to processes. You can use "before" and

"after" snapshots of the scenarios that you put forth.

Write a paper explaining how each algorithm works for your scenarios, how many processes can be loaded with

each algorithm before requiring memory compaction, and any other determining factors that would influence

you in selecting one algorithm over another. Can you think of situations where the best-fit algorithm is

preferable to the next-fit algorithm? Explain your reasons for that opinion.

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include at least

four references in addition to the course textbook. The CSU Global Library is a good place to find these

references.

Portfolio Milestone (25 points)

Option #1: Using C Programming language

From the previous exercises, you have 2 files in your Linux installation: file1.txt and file2.txt, both with one

million rows of random numbers. Create a new script, double_numbers.sh, to read each line of file1.txt, storing

the number from each line into a variable, then write a value that is double the original number, into another

file called newfile1.txt. Once this is done for the entire contents of file1.txt, display the time it took to run. Your

script might look as follows:

#!/bin/bash

SECONDS=0

while read -r number

do

 let "number *= 2"

 echo $number >> newfile1.txt

done < file1.txt

duration=$SECONDS

echo $duration

You may want to create a smaller file to work with until the process is working correctly. You can use the "head"

command to grab the first 10 rows of file1.txt into another file and use that file in your script:

head file1.txt > tempfile.txt

For proper syntax of reading files into variables, read ​How to read file line by line in Bash script​.

You can also use the "head" command to quickly verify that newfile1.txt contains numbers that are double the

value of the corresponding rows of file1.txt.

head file1.txt newfile1.txt

Once you have the script working to your satisfaction, delete newfile1.txt and run double_numbers.sh. You

should now have a file called newfile1.txt containing one million lines. You should also have information

indicating how long this process took to run.

Using C, create a program to perform this task, with 3 methods of doing this:

1. Read the entire contents of file1.txt into memory, then process each row.

2. Read one row of file1.txt at a time and process it.

3. Split file1.txt into 2 parts and read each part into memory separately.

Be sure to capture execution times for each method. How do they compare to each other, and to that of the

double_numbers.sh script? Were there any surprises for you, or did the results match your expectations?

Describe your findings in detail.

Option #2: Using Python Programming language

From the previous exercises, you have 2 files in your Linux installation: file1.txt and file2.txt, both with one

million rows of random numbers. Create a new script, double_numbers.sh, to read each line of file1.txt, storing

the number from each line into a variable, then write a value that is double the original number into another file

called newfile1.txt. Once this is done for the entire contents of file1.txt, display the time it took to run. Your

script might look as follows:

#!/bin/bash

SECONDS=0

while read -r number

do

 let "number *= 2"

 echo $number >> newfile1.txt

done < file1.txt

duration=$SECONDS

echo $duration

You may want to create a smaller file to work with until the process is working correctly. You can use the "head"

command to grab the first 10 rows of file1.txt into another file, and use that file in your script.

head file1.txt > tempfile.txt

For proper syntax of reading files into variables, read ​How to read file line by line in Bash script​.

You can also use the "head" command to quickly verify that newfile1.txt contains numbers that are double the

value of the corresponding rows of file1.txt:

head file1.txt newfile1.txt

Once you have the script working to your satisfaction, delete newfile1.txt and run double_numbers.sh. You

should now have a file called newfile1.txt containing one million lines. You should also have information

indicating how long this process took to run.

Using Python, create a program to perform this task, with 3 methods of doing this:

1. Read the entire contents of file1.txt into memory, then process each row.

2. Read one row of file1.txt at a time and process it.

3. Split file1.txt into 2 parts and read each part into memory separately.

Be sure to capture execution times for each method. How do they compare to each other, and to that of the

double_numbers.sh script? Were there any surprises for you, or did the results match your expectations?

Describe your findings in detail.

Module 5

Readings

· Chapter 8 in​ Operating systems: Internals and design principles
· Alam, H., Zhang, T., Erez, M., & Etsion, Y. (2018). Do-it-yourself virtual memory translation. ​ACM

SIGOPS Operating Systems Review, 50​(1).
· Haria, S., Hill, M. D., Swift, M. M. (2018). Devirtualizing memory in heterogeneous systems. In

ASPLOS '18: Proceedings of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems.

Discussion (25 points)

Critical Thinking (75 points)

Option #1: Evaluate and experiment with virtual memory settings on a computer

In your computer's OS, locate the settings for virtual memory. Are they set to the optimal setting? What

happens when you increase the size to be double that of the current setting? What happens when you turn off

virtual memory? How does the size of your RAM affect the recommendations for optimal virtual memory

settings?

Describe how it affects the performance of your computer, to use different virtual memory sizes, or to not use it

at all. Which resource-intensive applications are affected, and which ones are not? Be sure to include the

identifying information about your OS, such as the hardware it is running on, OS name & version, processor,

system type, and the size of the RAM.

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include at least

2-3 references in addition to the course textbook. The CSU Global Library is a good place to find these

references.

Option #2: Evaluate and experiment with virtual memory settings on a mobile phone

For this option, you may want to use an old phone that you are no longer using or are planning to upgrade soon,

as you will most likely need to jailbreak it, install special apps, and change other system settings that may

shorten the phone's lifespan, in order to modify its virtual memory. What happens when you set the size to be

one-half of the phone's RAM? What happens when you set the size to be the same as the phone's RAM? What

about twice the size? Can you set it to more than that? Is it advisable to do that for your specific phone?

Describe how each setting affects the loading and running of apps. Can you run more, or fewer,

resource-intensive apps at the same time, than with the original setting? What else do you notice about your

phone's performance, i.e. restart times, battery life, etc.? Be sure to include the identifying information about

your phone, such as the hardware it is running on, OS name & version, and the size of the RAM.

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include at least

2-3 references in addition to the course textbook. The CSU Global Library is a good place to find these

references.

Module 6

Readings

· Chapter 9 in ​Operating systems: Internals and design principles
· Chapter 10 in ​Operating systems: Internals and design principles
· Baptiste Lepers, B., Zwaenepoel, W. E., Lozi, J-P., Palix, N., Gouicem, R., Sopena, J., Lawall, J. L., &

Muller, G. (2017). Towards proving optimistic multicore schedulers. In ​HotOS '17: Proceedings of the
16th Workshop on Hot Topics in Operating Systems.

· Dinda, P., Wang, X., Wang, J., Beauchene, C., & Hetland, C. (2018). Hard real-time scheduling for
parallel run-time systems. In ​HPDC '18: Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing.

Discussion (25 points)

Critical Thinking (75 points)

Option #1: Evaluate real-time process scheduling

In an earlier module, you created programs that read the contents of a large file and process it, writing the

results into another large file. What if the files were 10x bigger, i.e. instead of a million rows, they were 10

million rows? Which of the following methods would have the fastest processing time:

1. Run the process as it is, with the larger files.

2. Break the input file up into 10 files and schedule the process on each one to run in real-time, then

combine the resulting files into a single output file.

3. Break the input file up into 2 files and schedule the process on each one to run in real-time, then

combine the resulting files into a single output file.

4. Break the input file up into 5 files and schedule the process on each one to run in real-time, then

combine the resulting files into a single output file.

5. Break the input file up into 20 files and schedule the process on each one to run in real-time, then

combine the resulting files into a single output file.

Can you think of other ways to increase efficiency and reduce processing time? Describe in detail or provide a

script to do so, with expected results for each method. Feel free to create such scripts and run them, to have

actual results instead of theoretical results.

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include at least

2-3 references in addition to the course textbook. The CSU Global Library is a good place to find these

references.

Option #2: Evaluate staggered process scheduling

In an earlier module, you created programs that read the contents of a large file and process it, writing the

results into another large file. What if the files were 10x bigger, i.e. instead of a million rows, they were 10

million rows? Which of the following methods would have the fastest processing time:

1. Run the process as it is, with the larger files.

2. Break the files up into 10 files and schedule processes to run 30 seconds or 1 minute apart, then

combine the resulting files into a single output file.

3. Break the files up into 2 files and schedule processes to run 30 seconds or 1 minute apart, then

combine the resulting files into a single output file.

4. Break the files up into 5 files and schedule processes to run 30 seconds or 1 minute apart, then

combine the resulting files into a single output file.

5. Break the files up into 20 files and schedule processes to run 30 seconds or 1 minute apart, then

combine the resulting files into a single output file.

Can you think of other ways to increase efficiency and reduce processing time? Describe in detail or provide a

script to do so, with expected results for each method. Feel free to create such scripts and run them, to have

actual results instead of theoretical results.

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include at least

2-3 references in addition to the course textbook. The CSU Global Library is a good place to find these

references.

Module 7

Readings

· Chapter 11 in ​Operating systems: Internals and design principles
· Akar, N., Tunç, Ç., Gaertner, M., & Erden, F. (2017). Disk scheduling with shortest cumulative access

time first algorithms. ​Turkish Journal of Electrical Engineering & Computer Sciences, 25​(4).
· Behzad, B., Byna, S., Byna, P., & S, M. (2019). Optimizing I/O performance of HPC applications with

autotuning. ​ACM Transactions on Parallel Computing, 5​(4).

Discussion (25 points)

Module 8

Readings

· Chapter 12 in ​Operating systems: Internals and design principles
· Khusro, S. & Mashwani, S. R. (2016). The life of a file: From cradle to grave or eternity. In ​INFOS '16:

Proceedings of the 10th International Conference on Informatics and Systems.
· Petrov, A. (2018). Algorithms behind modern storage systems. ​Communications of the ACM, 61​(8).

Discussion (25 points)

Portfolio Project (240 points)

Option #1: Working with Big Data using Multithreading

The goal of this project is to use the concepts taught in this course to develop an efficient way of working with

Big Data.

You should have 2 files in your Linux system: ​hugefile1.txt ​and ​hugefile2.txt​, with one billion lines in each one. If

you do not, please go back to the Module 7 Portfolio Reminder and complete the steps there.

Create a program, using a programming language of your choice, to produce a new file: ​totalfile.txt​, by taking

the numbers from each line of the two files and adding them. So, each line in file #3 is the sum of the

corresponding line in ​hugefile1.txt​ and ​hugefile2.txt​.

For example, if the first 5 lines of your files look as follows:

$ ​head -5 hugefile*txt

==> hugefile1.txt <==

4131

29929

6483

7659

25003

==> hugefile1.txt <==

8866

19171

11029

4889

27069

then the first 5 lines of ​totalfile.txt​ look like this:

$ ​head -5 totalfile.txt

12997

49100

17512

12548

52072

Because the files of such large sizes cannot be read into memory in their entirety at the same time, you need to

use concurrency. Reading the files one line at a time will take a long time, so use what you have learned in this

course to optimize this process. Be sure to record the amount of time it takes for each version of your program

to complete this task.

Optimize the program by using threads, so that you benefit from multiple cores in your CPU. Create a

multithreaded program, where each thread works on the next chunk of the file.

Now, break up ​hugefile1.txt​ and ​hugefile2.txt​ into 10 files each, and run your process on all 10 sets in parallel.

How do the run times compare to the original process?

Explain your methods and results in detail. What conclusions can you make about the different methods of

optimizing large file processing? How has the information that you learned in this course helped you to

accomplish this task?

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include 4-6

references in addition to the course textbook. The CSU Global Library is a good place to find these references.

Option #2: Working with Big Data using Parallel Processing

The goal of this project is to use the concepts taught in this course to develop an efficient way of working with

Big Data.

You should have 2 files in your Linux system: ​hugefile1.txt ​and ​hugefile2.txt​, with one billion lines in each one. If

you do not, please go back to the Module 7 Portfolio Reminder and complete the steps there.

Create a program, using a programming language of your choice, to produce a new file: ​totalfile.txt​, by taking

the numbers from each line of the two files and adding them. So, each line in file #3 is the sum of the

corresponding line in ​hugefile1.txt​ and ​hugefile2.txt​.

For example, if the first 5 lines of your files look as follows:

$ ​head -5 hugefile*txt

==> hugefile1.txt <==

4131

29929

6483

7659

25003

==> hugefile1.txt <==

8866

19171

11029

4889

27069

then the first 5 lines of ​totalfile.txt​ look like this:

$ ​head -5 totalfile.txt

12997

49100

17512

12548

52072

Because the files of such large sizes cannot be read into memory in their entirety at the same time, you need to

use concurrency. Reading the files one line at a time will take a long time, so use what you learned in this course

to optimize this process. Be sure to record the amount of time it takes for each version of your program to

complete this task.

Create two programs, where one program reads the first half of the files, and another program reads the second

half. Use the OS to launch both programs simultaneously.

Now, break up ​hugefile1.txt​ and ​hugefile2.txt​ into 10 files each, and run your process on all 10 sets in parallel.

How do the run times compare to the original process?

Explain your methods and results in detail. What conclusions can you make about the different methods of

optimizing large file processing? How has the information that you learned in this course helped you to

accomplish this task?

Your paper should be 2-3 pages in length and conform to ​CSU Global Guide to Writing and APA​. Include 4-6

references in addition to the course textbook. The CSU Global Library is a good place to find these references.

C​OURSE​ P​OLICIES

Grading Scale

 A 95.0 – 100

 A- 90.0 – 94.9

 B+ 86.7 – 89.9

 B 83.3 – 86.6

 B- 80.0 – 83.2

 C+ 75.0 – 79.9

 C 70.0 – 74.9

 D 60.0 – 69.9

 F 59.9 or below

Course Grading

20% Discussion Participation
45% Critical Thinking Assignments
35% Final Portfolio Project

I​N​-C​LASSROOM​ P​OLICIES

For information on late work and incomplete grade policies, please refer to our ​In-Classroom Student Policies

and Guidelines​ or the Academic Catalog for comprehensive documentation of CSU-Global institutional policies.

Academic Integrity
Students must assume responsibility for maintaining honesty in all work submitted for credit and in any other
work designated by the instructor of the course. Academic dishonesty includes cheating, fabrication, facilitating
academic dishonesty, plagiarism, reusing /re-purposing your own work (see ​CSU-Global Guide to Writing and
APA Requirements​ for percentage of repurposed work that can be used in an assignment), unauthorized
possession of academic materials, and unauthorized collaboration. The CSU-Global Library provides information
on how students can avoid plagiarism by understanding what it is and how to use the Library and Internet
resources.

Citing Sources with APA Style
All students are expected to follow the ​CSU-Global Guide to Writing and APA Requirements​ when citing in APA
(based on the APA Style Manual, 6th edition) for all assignments. For details on CSU-Global APA style, please
review the APA resources within the CSU-Global Library under the “APA Guide & Resources” link. A link to this
document should also be provided within most assignment descriptions in your course.

Disability Services Statement
CSU–Global is committed to providing reasonable accommodations for all persons with disabilities. Any student
with a documented disability requesting academic accommodations should contact the Disability Resource
Coordinator at 720-279-0650 and/or email​ ​ada@CSUGlobal.edu​ ​for additional information to coordinate
reasonable accommodations for students with documented disabilities.

Netiquette
Respect the diversity of opinions among the instructor and classmates and engage with them in a courteous,
respectful, and professional manner. All posts and classroom communication must be conducted in accordance
with the student code of conduct. Think before you push the Send button. Did you say just what you meant?
How will the person on the other end read the words?

Maintain an environment free of harassment, stalking, threats, abuse, insults or humiliation toward the
instructor and classmates. This includes, but is not limited to, demeaning written or oral comments of an ethnic,
religious, age, disability, sexist (or sexual orientation), or racist nature; and the unwanted sexual advances or
intimidations by email, or on discussion boards and other postings within or connected to the online classroom.
If you have concerns about something that has been said, please let your instructor know.

http://portal.csuglobal.edu/document/ACPOLICIES
http://portal.csuglobal.edu/document/ACPOLICIES
mailto:ada@CSUGlobal.edu

